• For German
    research organisations
  • Research landscape
  • News and research areas
  • Your goal
  • Our service
Why Germany
  • R&D policy framework
  • Research infrastructure
  • Research funding system
Universities
  • Universities of applied sciences
Research institutes
  • Fraunhofer-Gesellschaft
  • Helmholtz Association
  • Leibniz Association
  • Max-Planck-Gesellschaft
  • Academies of sciences and humanities
  • Federal institutions
  • Länder institutions
  • Research infrastructure
  • Industrial research
Industrial research
Top universities
Research News
Global Health
Bioeconomy
InnoHealth
EnergInno
Future of Work
COVID-19 in Germany
Cancer Research
Bachelor or master
PhD
  • Good reasons
  • Two ways to get your PhD
  • Find your PhD position
  • How to apply for a PhD
  • Funding programmes
  • Funding organisations
  • Funding databases
  • Job portals
Postdoc
  • Good reasons
  • Career options & dual careers
  • Funding programmes
  • Funding organisations
  • Funding databases
  • Job portals
Advanced research
  • Good reasons
  • Career options & dual careers
  • Funding & awards
  • Funding organisations
  • Funding databases
  • Job portals
Research Position
  • Find a job
  • Potential employers
  • Research fields
Events & online talks
  • Events
  • Online talks
  • Innovation Week
Research news
Newsletter
  • Subscribe
  • Newsletter 2022
  • Newsletter 2021
Our publications
Success stories
Link to German Institutions research organisations
  • Research landscape
    • Overview Research landscape
    • Why Germany
      • Overview Why Germany
      • R&D policy framework
      • Research infrastructure
        • Overview Research infrastructure
        • DESY – Deutsches Elektronen-Synchrotron
        • DKRZ – German Climate Computing Centre
        • Research vessel Polarstern
        • FLASH – free-electron laser in Hamburg
      • Research funding system
        • Overview Research funding system
        • Government funding
        • How does government funding work?
    • Universities
      • Overview Universities
      • Universities of applied sciences
    • Research institutes
      • Overview Research institutes
      • Fraunhofer-Gesellschaft
      • Helmholtz Association
      • Leibniz Association
      • Max-Planck-Gesellschaft
      • Academies of sciences and humanities
      • Federal institutions
      • Länder institutions
      • Research infrastructure
      • Industrial research
    • Industrial research
    • Top universities
  • News and research areas
    • Overview News and research areas
    • Research News
    • Global Health
    • Bioeconomy
    • InnoHealth
    • EnergInno
    • Future of Work
    • COVID-19 in Germany
    • Cancer Research
  • Your goal
    • Overview Your goal
    • Bachelor or master
    • PhD
      • Overview PhD
      • Good reasons
      • Two ways to get your PhD
      • Find your PhD position
      • How to apply for a PhD
      • Funding programmes
      • Funding organisations
      • Funding databases
      • Job portals
    • Postdoc
      • Overview Postdoc
      • Good reasons
      • Career options & dual careers
        • Overview Career options & dual careers
        • Professorship
        • Postdoc positions
        • Junior research group leader
        • Researcher in industry
        • Research stays and visits
        • International collaborations
        • Dual careers
      • Funding programmes
      • Funding organisations
      • Funding databases
      • Job portals
    • Advanced research
      • Overview Advanced research
      • Good reasons
      • Career options & dual careers
        • Overview Career options & dual careers
        • Professorship
        • Visiting professorship & visiting lectureship
        • Leading a research group
        • Researcher in a company
        • Research stays and visits
        • International collaborations
        • Dual careers
      • Funding & awards
      • Funding organisations
      • Funding databases
      • Job portals
    • Research Position
      • Overview Research Position
      • Find a job
      • Potential employers
      • Research fields
        • Overview Research fields
        • Agriculture
        • Architecture
        • Earth Sciences
        • Engineering
        • Forestry
        • Law
        • Logistics
        • Pharmacy
  • Our service
    • Overview Our service
    • Events & online talks
      • Overview Events & online talks
      • Events
      • Online talks
        • Overview Online talks
        • Planning your research career in germany
        • The DAAD PRIME fellowship
        • Meet the Helmholtz Association
        • Learn more about the new Erasmus+ programme for PhD students
        • Interdisciplinary research
        • Global health research
        • Digital learning
        • Meet the German Research Foundation
        • Meet the Alexander von Humboldt Foundation
        • Ask a professor
        • Postdoctoral Opportunities in Germany
        • Doctorate Opportunities in Germany
        • The German research landscape
        • Doing research in humanities
        • Women in science
        • Departmental research
        • Online talk: bioeconomy
        • Research opportunities for Indian scholars
        • Universities of Applied Sciences
        • German research clusters
        • Scientific start-ups in Germany
        • Artificial intelligence
        • Online talks for science administrators
        • Future of work
        • How is a research group structured?
        • How to do research in industry
        • Learn from first-hand experience!
        • Funding your research stay
        • Registration Process and Technical Requirements
      • Innovation Week
    • Research news
    • Newsletter
      • Overview Newsletter
      • Subscribe
      • Newsletter 2022
        • Overview Newsletter 2022
        • February 2022
        • June 2022
      • Newsletter 2021
        • Overview Newsletter 2021
        • December 2021
        • October 2021
        • August 2021
        • June 2021
        • April 2021
        • February 2021
    • Our publications
    • Success stories
  1. Home
  2. News & Research Areas
  3. Research News

News

Another step towards synthetic cells

Introducing functional DNA-based cytoskeletons into cell-sized compartments – Publication in Nature Chemistry

Scientists from the 2. Physics Institute at the University of Stuttgart and the Max Planck Institute for Medical Research were now able to take the next step towards synthetic cells: They introduced functional DNA-based cytoskeletons into cell-sized compartments and showed functionality. The results were recently published in Nature Chemistry.

Building functional synthetic cells from the bottom-up is an ongoing effort of scientists around the globe. Their use in studying cellular mechanisms in a highly controlled and pre-defined setting creates great value for understanding nature as well as developing new therapeutic approaches. Scientists from the 2. Physics Institute at the University of Stuttgart and colleagues from the Max Planck Institute for Medical Research were now able to take the next step towards synthetic cells. They introduced functional DNA-based cytoskeletons into cell-sized compartments. Cytoskeletons are essential components of each cell that control their shape, internal organization and other vital functions such as transport of molecules between different parts of the cell. Upon incorporating the cytoskeletons into the synthetic droplets, the researchers also showed functionality such as transport of molecules or assembly and disassembly upon certain triggers. The results were recently published in Nature Chemistry.

Challenge to mimic cytoskeletal functions

The cytoskeleton is a crucial component of each cell and it is made up of various proteins. Beyond the basic function of giving the cell its shape, it is essential for many cellular processes such as cell division, intracellular transport of various molecules or motility in response to external signaling. Due to its importance in natural systems, being able to mimic its functionality also in an artificial setup is an important step towards building and designing a synthetic cell. However, it comes with many challenges due to the diverse requirements towards it, including stability as well as quick adaptability and reactivity to triggers.

Researchers in the field of synthetic biology have previously used DNA nanotechnology to recreate cellular components such as DNA-based mimics of ion channels or cell-cell linkers. For this, they take advantage of the fact that DNA can be programmed or engineered to self-assemble into a pre-planned shape by complementary base-pairing.

DNA filaments as synthetic cytoskeleton

“Synthetic DNA structures can enable highly specific and programmed tasks as well as versatile design possibilities beyond what is available from the biologically defined tools. Especially, the structural organization of the DNA structures may depart from their natural counterparts, even possibly outpacing the functionality scope of natural systems”, says Laura Na Liu, Professor at the 2. Physics Institute, University of Stuttgart.

Furthermore, Researchers such as Paul Rothemund, Elisa Franco or Rebecca Schulman, had already been successful in assembling DNA into micron-scale filaments, which constitute the basis of building a cytoskeleton. Since then, these filaments have been equipped with diverse functions, such as the assembly and disassembly upon external stimulation or inside a compartment. Scientists from the University of Stuttgart and the MPI for Medical Research have now taken the next step to building an artificial cell, by using the filaments as a synthetic cytoskeleton and giving them diverse functionality.

“It is exciting that we can also trigger the assembly of the DNA cytoskeleton with ATP – the same molecule cells use to power different mechanisms”, says Kerstin Göpfrich, Max Planck Research Group Leader at the MPI for Medical Research.

Speeding up the vesicle transport

Moreover, the team of scientists was able to induce the transport of vesicles along the filaments using the burnt-bridge mechanism introduced by Khalid Salaita. This mimics the vesicle transport along parts of the natural cytoskeleton in cells, called microtubuli. “In comparison to transport in living cells, transport along our DNA filaments is still slow. Speeding it up will be a challenge for the future”, says Kevin Jahnke, shared first author of the paper and postdoc in Kerstin Göpfrich’s group at the MPIMR. Pengfei Zhan, postdoc in the group led by Prof. Laura Na Liu in Stuttgart, adds: “It was also a challenge to fine-tune the energy landscapes of the DNA nanostructure’s assembly and disassembly capabilities of the filaments.” In the future, functionalizing the DNA filaments even more will be crucial to mimic natural cells even better. Thereby, researchers could create synthetic cells to study cellular mechanisms in greater detail or develop new therapeutic approaches.

 

Publication
Pengfei Zhan, Kevin Jahnke, Na Liu & Kerstin Göpfrich; Functional DNA-based cytoskeletons for synthetic cells; Nature Chemistry (2022) DOI: https://doi.org/10.1038/s41557-022-00945-w  

Contact
Prof. Laura Na Liu
Universität Stuttgart 
2. Physikalisches Institut,
+49 711 685-65218
na.liu@pi2.uni-stuttgart.de

Original news publication by University of Stuttgart
Back to all news

Get updates! If you want to stay informed, follow us on LinkedIn, Twitter, Facebook, WeChat, YouTube or via RSS and subscribe to our newsletter.

Publisher BMBF Website
Editor DAAD Website
  • Contact us
  • About us
  • Imprint
  • Data protection