• For German
    research organisations
  • Research landscape
  • News and research areas
  • Your goal
  • Our service
Why Germany
  • R&D policy framework
  • Research infrastructure
  • Research funding system
Universities
  • Universities of applied sciences
Research institutes
  • Fraunhofer-Gesellschaft
  • Helmholtz Association
  • Leibniz Association
  • Max-Planck-Gesellschaft
  • Academies of sciences and humanities
  • Federal institutions
  • Länder institutions
  • Research infrastructure
  • Industrial research
Industrial research
Top universities
Research News
Global Health
Bioeconomy
InnoHealth
EnergInno
Future of Work
COVID-19 in Germany
Cancer Research
Bachelor or master
PhD
  • Good reasons
  • Two ways to get your PhD
  • Find your PhD position
  • How to apply for a PhD
  • Funding programmes
  • Funding organisations
  • Funding databases
  • Job portals
Postdoc
  • Good reasons
  • Career options & dual careers
  • Funding programmes
  • Funding organisations
  • Funding databases
  • Job portals
Advanced research
  • Good reasons
  • Career options & dual careers
  • Funding & awards
  • Funding organisations
  • Funding databases
  • Job portals
Research Position
  • Find a job
  • Potential employers
  • Research fields
Events & online talks
  • Events
  • Online talks
  • Innovation Week
Research news
Newsletter
  • Subscribe
  • Newsletter 2022
  • Newsletter 2021
Our publications
Success stories
Link to German Institutions research organisations
  • Research landscape
    • Overview Research landscape
    • Why Germany
      • Overview Why Germany
      • R&D policy framework
      • Research infrastructure
        • Overview Research infrastructure
        • DESY – Deutsches Elektronen-Synchrotron
        • DKRZ – German Climate Computing Centre
        • Research vessel Polarstern
        • FLASH – free-electron laser in Hamburg
      • Research funding system
        • Overview Research funding system
        • Government funding
        • How does government funding work?
    • Universities
      • Overview Universities
      • Universities of applied sciences
    • Research institutes
      • Overview Research institutes
      • Fraunhofer-Gesellschaft
      • Helmholtz Association
      • Leibniz Association
      • Max-Planck-Gesellschaft
      • Academies of sciences and humanities
      • Federal institutions
      • Länder institutions
      • Research infrastructure
      • Industrial research
    • Industrial research
    • Top universities
  • News and research areas
    • Overview News and research areas
    • Research News
    • Global Health
    • Bioeconomy
    • InnoHealth
    • EnergInno
    • Future of Work
    • COVID-19 in Germany
    • Cancer Research
  • Your goal
    • Overview Your goal
    • Bachelor or master
    • PhD
      • Overview PhD
      • Good reasons
      • Two ways to get your PhD
      • Find your PhD position
      • How to apply for a PhD
      • Funding programmes
      • Funding organisations
      • Funding databases
      • Job portals
    • Postdoc
      • Overview Postdoc
      • Good reasons
      • Career options & dual careers
        • Overview Career options & dual careers
        • Professorship
        • Postdoc positions
        • Junior research group leader
        • Researcher in industry
        • Research stays and visits
        • International collaborations
        • Dual careers
      • Funding programmes
      • Funding organisations
      • Funding databases
      • Job portals
    • Advanced research
      • Overview Advanced research
      • Good reasons
      • Career options & dual careers
        • Overview Career options & dual careers
        • Professorship
        • Visiting professorship & visiting lectureship
        • Leading a research group
        • Researcher in a company
        • Research stays and visits
        • International collaborations
        • Dual careers
      • Funding & awards
      • Funding organisations
      • Funding databases
      • Job portals
    • Research Position
      • Overview Research Position
      • Find a job
      • Potential employers
      • Research fields
        • Overview Research fields
        • Agriculture
        • Architecture
        • Earth Sciences
        • Engineering
        • Forestry
        • Law
        • Logistics
        • Pharmacy
  • Our service
    • Overview Our service
    • Events & online talks
      • Overview Events & online talks
      • Events
      • Online talks
        • Overview Online talks
        • Planning your research career in germany
        • The DAAD PRIME fellowship
        • Meet the Helmholtz Association
        • Learn more about the new Erasmus+ programme for PhD students
        • Interdisciplinary research
        • Global health research
        • Digital learning
        • Meet the German Research Foundation
        • Meet the Alexander von Humboldt Foundation
        • Ask a professor
        • Postdoctoral Opportunities in Germany
        • Doctorate Opportunities in Germany
        • The German research landscape
        • Doing research in humanities
        • Women in science
        • Departmental research
        • Online talk: bioeconomy
        • Research opportunities for Indian scholars
        • Universities of Applied Sciences
        • German research clusters
        • Scientific start-ups in Germany
        • Artificial intelligence
        • Online talks for science administrators
        • Future of work
        • How is a research group structured?
        • How to do research in industry
        • Learn from first-hand experience!
        • Funding your research stay
        • Registration Process and Technical Requirements
      • Innovation Week
    • Research news
    • Newsletter
      • Overview Newsletter
      • Subscribe
      • Newsletter 2022
        • Overview Newsletter 2022
        • February 2022
        • June 2022
      • Newsletter 2021
        • Overview Newsletter 2021
        • December 2021
        • October 2021
        • August 2021
        • June 2021
        • April 2021
        • February 2021
    • Our publications
    • Success stories
  1. Home
  2. News & Research Areas
  3. Research News

News

Using quantum technology to ensure low-noise microphones

Use of quantum light leads to a significant improvement in signal-to-noise ratio

Whether it's an online conference or a hearing aid, a high noise level in the microphones used, or significant background noise will disrupt any conversation, and better microphones are urgently needed. Researchers at the University of Stuttgart have now developed a quantum microphone that takes noise reduction to a whole new dimension. It was tested at Stuttgart's Olgahospital - with promising results.

So far, the development of commercially available microphones has focused primarily on suppressing technical noise sources, such as signal amplification electronics. A research group led by Dr. Florian Kaiser at the Institute of Physics 3 at the University of Stuttgart has now gone one step further and investigated the fundamental limit up to which noise can be suppressed. They were able to show that using quantum technologies can push these limits. To this end, the group first developed a laser microphone similar to those used for monitoring industrial machinery and in espionage. However, as expected, this classical laser microphone was limited in its performance capability by electrical noise present during the measurement process. In the next step, the classical laser light was replaced by specially-adapted quantum light, which directly improved the signal-to-noise ratio by 0.57 decibels. This might not seem like a lot at first glance. However, it is a significant improvement in low signal-to-noise environments, such as those commonly found in the communication between flight controllers and airplane pilots.

People can hear the advantage of quantum technologies for the first time

To conduct the measurements, researchers teamed up with the Olgahospital in Stuttgart to conduct a medically-approved speech recognition trial on 45 subjects. The aim of the study was to determine the minimum required sound level, above which patients correctly understood 50 percent of the words. The study found that more than 71% of the subjects were able to immediately recognize the improvement provided by the quantum microphone.

"These results are mainly based on the high rate at which we generate entangled photons, as well as the subsequent quantum state conversion from a multi-photon state to a single-photon state," explains project coordinator Dr. Florian Kaiser from the 3rd Institute of Physics at the University of Stuttgart. "The resulting increase in measurement rates by a factor of 10,000 compared to previous approaches enabled us to increase measurement rates up to 100 kHz, which allowed us to comfortably cover the audio band (20 Hz - 20 kHz). Additionally, thanks to the quantum state conversion, we can now use the same cost-effective detectors that we use for the classical laser microphone. This is or course very interesting from a commercial perspective."

Doctoral researcher Raphael Nold adds: "Our approach is not limited to use in quantum microphones. We also see great potential for our technology in imaging examinations of light-sensitive biospecimens. Our current work already clearly demonstrates that competitive quantum imaging is possible with commercially available enhancements." Dr. María T. Pérez Zaballos, who brought the experience she gained whilst writing her doctoral thesis at the University in Las Palmas / Spain (reviewer Florian Kaiser) to the research, adds: "My doctoral thesis concentrated on psychoacoustic experiments with air traffic controllers as well as people with hearing impairments. For me, this interdisciplinary research gives a glimpse of the medical technology innovations we will be able to enjoy in 50 years."

The aim: To integrate the system on a photonic chip

Although the commercialization of this approach is still a long way off, due to the high energy consumption required to generate the quantum light, the concept of quantum state conversion before light detection has the potential to become a game changer for future research studies. "Our next steps will involve benefiting from the tremendous advancements made in integrated quantum photonics to implement the entire setup on a photonic chip," says D. Florian Kaiser. "Having such compact systems at hand would enable a plethora of applications, covering fundamental research, bio-imaging, to effective public exhibitions and experiments in which people can directly experience quantum technologies."

Expert Contact:

Dr. Florian Kaiser, University of Stuttgart, Institute of Physics 3, Phone +49 711 685 60084, E-Mail

Original publication

Raphael Nold, Charles Babin, Joel Schmidt, Tobias Linkewitz, María T. Pérez Zaballos, Rainer Stöhr, Roman Kolesov, Vadim Vorobyov, Daniil M. Lukin, Rüdiger Boppert, Stefanie Barz, Jelena Vuckovic, J. Christof M. Gebhardt, Florian Kaiser, Jörg Wrachtrup: Quantum Optical Microphone in the Audio Band, in: PRX Quantum, publication on June 17, 2022, https://doi.org/10.1103/PRXQuantum.3.020358

Original news publication
Back to all news

Get updates! If you want to stay informed, follow us on LinkedIn, Twitter, Facebook, WeChat, YouTube or via RSS and subscribe to our newsletter.

Publisher BMBF Website
Editor DAAD Website
  • Contact us
  • About us
  • Imprint
  • Data protection