• For German
    research organisations
  • Research landscape
  • News and research areas
  • Your goal
  • Our service
Why Germany
  • R&D policy framework
  • Research infrastructure
  • Research funding system
Universities
  • Universities of applied sciences
Research-Organisations
  • Fraunhofer-Gesellschaft
  • Helmholtz Association
  • Leibniz Association
  • Max-Planck-Gesellschaft
  • Academies of sciences and humanities
  • Federal institutions
  • Länder institutions
  • Research infrastructure
  • Industrial research
Industrial research
Top universities
Research News
Global Health
Bioeconomy
InnoHealth
EnergInno
Future of Work
COVID-19 in Germany
Cancer Research
Bachelor or master
PhD
  • Good reasons
  • Two ways to get your PhD
  • Find your PhD position
  • Funding programmes
  • Funding organisations
  • Funding databases
  • Job portals
Postdoc
  • Good reasons
  • Career options & dual careers
  • Funding programmes
  • Funding organisations
  • Funding databases
  • Job portals
Advanced research
  • Good reasons
  • Career options & dual careers
  • Funding & awards
  • Funding organisations
  • Funding databases
  • Job portals
Research Position
  • Find a job
  • Potential employers
  • Research fields
Events & online talks
  • Events
  • Online talks
  • Innovation Week
Research news
Newsletter
  • Subscribe
  • Newsletter 2022
  • Newsletter 2021
Our publications
Success stories
Link to German Institutions research organisations
  • Research landscape
    • Overview Research landscape
    • Why Germany
      • Overview Why Germany
      • R&D policy framework
      • Research infrastructure
        • Overview Research infrastructure
        • DESY – Deutsches Elektronen-Synchrotron
        • DKRZ – German Climate Computing Centre
        • Research vessel Polarstern
        • FLASH – free-electron laser in Hamburg
      • Research funding system
        • Overview Research funding system
        • Government funding
        • How does government funding work?
    • Universities
      • Overview Universities
      • Universities of applied sciences
    • Research-Organisations
      • Overview Research-Organisations
      • Fraunhofer-Gesellschaft
      • Helmholtz Association
      • Leibniz Association
      • Max-Planck-Gesellschaft
      • Academies of sciences and humanities
      • Federal institutions
      • Länder institutions
      • Research infrastructure
      • Industrial research
    • Industrial research
    • Top universities
  • News and research areas
    • Overview News and research areas
    • Research News
    • Global Health
    • Bioeconomy
    • InnoHealth
    • EnergInno
    • Future of Work
    • COVID-19 in Germany
    • Cancer Research
  • Your goal
    • Overview Your goal
    • Bachelor or master
    • PhD
      • Overview PhD
      • Good reasons
      • Two ways to get your PhD
      • Find your PhD position
      • Funding programmes
      • Funding organisations
      • Funding databases
      • Job portals
    • Postdoc
      • Overview Postdoc
      • Good reasons
      • Career options & dual careers
        • Overview Career options & dual careers
        • Professorship
        • Postdoc positions
        • Junior research group leader
        • Researcher in industry
        • Research stays and visits
        • International collaborations
        • Dual careers
      • Funding programmes
      • Funding organisations
      • Funding databases
      • Job portals
    • Advanced research
      • Overview Advanced research
      • Good reasons
      • Career options & dual careers
        • Overview Career options & dual careers
        • Professorship
        • Visiting professorship & visiting lectureship
        • Leading a research group
        • Researcher in a company
        • Research stays and visits
        • International collaborations
        • Dual careers
      • Funding & awards
      • Funding organisations
      • Funding databases
      • Job portals
    • Research Position
      • Overview Research Position
      • Find a job
      • Potential employers
      • Research fields
        • Overview Research fields
        • Agriculture
        • Architecture
        • Earth Sciences
        • Engineering
        • Forestry
        • Law
        • Logistics
        • Pharmacy
  • Our service
    • Overview Our service
    • Events & online talks
      • Overview Events & online talks
      • Events
      • Online talks
        • Overview Online talks
        • Planning your research career in germany
        • The DAAD PRIME fellowship
        • Meet the Helmholtz Association
        • Learn more about the new Erasmus+ programme for PhD students
        • Interdisciplinary research
        • Global health research
        • Digital learning
        • Meet the German Research Foundation
        • Meet the Alexander von Humboldt Foundation
        • Ask a professor
        • Postdoctoral Opportunities in Germany
        • Doctorate Opportunities in Germany
        • The German research landscape
        • Doing research in humanities
        • Women in science
        • Departmental research
        • Online talk: bioeconomy
        • Research opportunities for Indian scholars
        • Universities of Applied Sciences
        • German research clusters
        • Scientific start-ups in Germany
        • Artificial intelligence
        • Online talks for science administrators
        • Future of work
        • How is a research group structured?
        • How to do research in industry
        • Learn from first-hand experience!
        • Funding your research stay
        • Registration Process and Technical Requirements
      • Innovation Week
    • Research news
    • Newsletter
      • Overview Newsletter
      • Subscribe
      • Newsletter 2022
        • Overview Newsletter 2022
        • February 2022
      • Newsletter 2021
        • Overview Newsletter 2021
        • December 2021
        • October 2021
        • August 2021
        • June 2021
        • April 2021
        • February 2021
    • Our publications
    • Success stories
  1. Home
  2. News & Research Areas
  3. Research News

News

Cosmic chemistry in the lab

Investigating the harsh environment of interstellar space in a FLASH

Using DESY's free-electron laser FLASH, scientists have recreated some of the harsh environment of interstellar space in the lab and analysed the reaction of astrochemical molecules to these conditions. The results show a comprehensive picture of the dynamics of polycyclic aromatic hydrocarbons (PAH) under extreme ultraviolet radiation in a vacuum – resembling the cosmic environment between the stars of our galaxy, the Milky Way. As the international team led by DESY scientists Bastian Manschwetus and Melanie Schnell write, the results promote understanding of organic chemistry in space. Their study has been published in the journal Nature Communications, and is featured in DESY's new Photon Science 2021 highlights report.

Organic chemistry is the reactions, compositions and properties of molecules containing carbon (C). It is particularly important for the chemistry of life. PAHs are an important group of organic compounds, consisting of carbon and hydrogen (H). “Polycyclic aromatic hydrocarbons are found in almost every corner of the universe, accounting for up to 20 per cent of all carbon in space,” explains Jason Lee from DESY, one of the paper's main authors. “These molecules play an important role in interstellar chemistry, providing reaction surfaces, aggregating into larger species such as fullerenes and fragmenting into building blocks for other organic molecules, among other things. Our work aims at understanding the reaction dynamics of PAHs following interaction with the ionising radiation found in interstellar space.”

The scientists investigated the response of the three small PAHs fluorene (C13H10), phenanthrene (C14H10), and pyrene (C16H10) to the extreme ultraviolet (XUV) radiation from DESY's free-electron laser FLASH. The XUV flashes were tuned to a wavelength of 30.3 nanometres, matching an important emission line of helium in interstellar space. For comparison: visible light has wavelengths between 400 and 800 nanometres.

The extreme ultraviolet photons can knock up to three electrons out of a PAH molecule, leading to a highly ionised state. With a specialised instrument, the CAMP endstation, and a super-fast camera, PImMS, the team could disentangle the complex fragmentation and ionization dynamics of the molecules. The analysis shows that all investigated PAHs respond extremely quickly following the absorption of the high energy radiation, redistributing the energy into atomic movement in much less than a picosecond (trillionth of a second). Scientists summarise these processes under the term relaxation. State-of-the-art theoretical calculation predict relaxation on the same timescale.

According to the data, doubly-ionised PAH molecules – so-called dications, where two electrons were kicked out of the molecule by the XUV photon – have a strong preference to split into two fragments each carrying a single electric charge (hence called monocations). The dications also showed a preference to fragment into two monocations accompanied by the neutral loss of two carbon atoms (C2). This is especially intriguing, as it mirrors the proposed mechanism for creating PAHs in the first place, where acetylene molecules are added together sequentially. Acetylene is a simple molecule with the formula C2H2. The experiments also recorded fragmentation from the triply-charged PAH molecules which will be reported in a follow up paper.

“Our results show that ultrafast relaxation may be ubiquitous amongst polycyclic aromatic hydrocarbons,” says Lee. Further experiments performed at FLASH in 2021 with a new set of PAHs are to corroborate this observation. These experiments provide valuable insights into the interaction of these abundant PAH molecules with interstellar radiation, revealing the products that would be formed in space. These ions and fragments form the building blocks for further molecules, shaping the organic chemistry of the cosmos.

Scientists from the universities of Oxford, Kiel, Lund, Gothenburg, Hamburg, Amsterdam, Göttingen, from the Radboud University in Nijmegen, Saint Petersburg State University, Kansas State University, Vrije Universiteit Amsterdam, European XFEL and DESY contributed to this research.


Publication 
Time-Resolved Relaxation and Fragmentation of Polycyclic Aromatic Hydrocarbons Investigated in the Ultrafast XUV-IR Regime; J. W. L. Lee, D. S. Tikhonov, et al.; Nature Communications, 2021; DOI: 10.1038/s41467-021-26193-z

Contact
Deutsches Elektronen-Synchrotron DESY
A Research Centre of the Helmholtz Association
Notkestraße 85
D-22607 Hamburg
+49 40 8998-3613
presse@desy.de

https://www.desy.de/news/news_search/index_eng.html?openDirectAnchor=2226
Back to all news

Get updates! If you want to stay informed, follow us on LinkedIn, Twitter, Facebook, WeChat, YouTube or via RSS and subscribe to our newsletter.

Publisher BMBF Website
Editor DAAD Website
  • Contact us
  • About us
  • Imprint
  • Data protection